Pragmatic Web Security

THE PARTS OF JWT SECURITY NOBODY TALKS ABOUT

PHILIPPE DE RYCK @PhilippeDeRyck — philippe@PragmaticWebSecurity.com

WHAT DO YOU
KNOW ABOUT
JSON WEB TOKENS?

y @PhilippeDeRyck

eyJhbGci0iJIUzITNiIsInRS5cCI6IkpXVCJ9.eyJ
zdWIi0iIxMjMONTY3O0DkwIiwibmFtZSI6I1BoaWx
pcHB1IERLIIFJSY2silCJyb2xlcyI6InVzZXIgcmV
zdGF1cmFudG93bmVyIiwiaWFOI joxNTE2MjMSMDI
yfQ.KPjhyE90i83uehgwélLm_0ByAZzRuJhcUQXETD
2AIrF2A

E nCOd ed PASTE A TOKEN HERE

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ
zdWIiOiIXxMjMONTY30DkwIiwibmFtZSI6I1BoaWx
pcHB1IER1IFJ5Y2silLCJyb2x1lcyI6InVzZXIgcmV
zdGF1cmFudG93bmVyIiwiaWFOI joxNTE2MjM5MDI
yfQ.KPjhyE90i83uehgwb6Lm_0yAZzRuJhcUgQXETD
2AIrF2A

DeCOd ed EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

{
"alg": "HS256",
"typ": "JWT"

}

PAYLOAD: DATA

"sub": "1234567890",
"name”: "Philippe De Ryck",

"roles": "user restaurantowner”,

"iat": 1516239022

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

SuperSecretHMACKey

) O secret base64 encoded

JWT IS A PART OF THE JOSE FRAMEWORK

 JOSE stands for JavaScript Object Signing and Encryption
* A collection of specifications to securely transfer claims between parties
* JWT is the mechanism to represent claims
* JWTs are augmented with signatures and encryption to offer additional security

* The JOSE specifications support different serializations of a data object

* Compact serialization generates URL-safe strings of data
* JWTs always use the compact serialization
* This type of serialization is also mandated for tokens used in the OpenlID Connect protocol

* The alternative JSON serialization is intended for use outside of web requests /
responses

* It is not optimized for compactness
* |t also supports the specification of multiple signatures using different keys and algorithms

y @PhilippeDeRyck

JSON WEB TOKENS (JWT)

THE TECHNICALITIES OF JWT
USING JWTS FOR SESSION DATA
ADVANCED JWT TOPICS
SECURITY CONSIDERATIONS

CONCLUSION

y @PhilippeDeRyck 5

JWTS ARE A WAY TO REPRESENT CLAIMS

* Claims are key value pairs in the payload of the JWT
e Apart from a few reserved claims, the issuer can include arbitrary claims

* The compact serialization mandates that the JWT is base64-encoded

* Base64 encoding makes data safe to use in HTTP requests and responses
* |t looks like scrambled data, but it is only an encoding
* Anyone can decode the payload of a JWT

> atob("eyJzdWIiOiIxMjMONTY30DkwIiwibmFtZSI6I1BoaWx
PCHBLIERLIFJ5Y2siLClyb2xlcyI6InVzZXIgcmVzdGFlcmFu
dG93bmVyIiwiaWF@IjoxNTE2MjM5MDIyfQ")

"{"sub":"1234567890","name" :"Philippe De Ryck","r
9 . oles":"user restaurantowner","iat":1516239022}"

HOW CAN YOU ENSURE THE
SECURITY OF JWT CLAIMS?

@PhilippeDeRyck

GENERATE HMAC

data
Message differs
from the one
that was signed
VERIFYy HMAC l

Message is the
same as the one
that was signed

y @PhilippeDeRyck

WHAT IS THE PROBLEM
WITH HMAC-PROTECTED
JWTSsS?

@PhilippeDeRyck

GENERATE SIGNATURE

payload | 53— [EEENEY — €O — YRR <
J PRIVATE KEY

Message differs
from the one
that was signed

J PUBLIC KEY
VERIFY SIGNATURE

yxzN...sFno= »@—b C171...dfb
—>m—> C171...dfb

Message is the
same as the one
that was signed

payload

y @PhilippeDeRyck

10

JWT SIGNATURES

* JWTs support both symmetric HMACs and asymmetric signatures
 Symmetric HMACs depend on a shared secret key
» Asymmetric are digital signatures that depend on a public/private key pair

* Symmetric HMACs are useful to use within a single trust zone
* Backend service storing claims in a JWT for use within the application

* Not the right choice when other (internal) services are involved
* Never ever share your secret key!

* Asymmetric signatures are useful in distributed scenarios
* SSO or OAuth 2.0 scenarios using JWTs to transfer claims to other services
* Everyone with the public key can verify the signature

y @PhilippeDeRyck

11

JSON WEB SIGNATURE (JWS)
RFC 7515

* The JWS specification describes the signing mechanism of JWTs
* The spec covers how to generate, embed and verify signatures
* |t also covers the details on how to provide proper key information

* The header of the JWT contains all information needed to verify the signature

* The typ parameter specifies the media type of the data that has been signed

* In this context, this parameter has the value JWT
* The alg parameter specifies the algorithm used to sign the header and payload
* Additional fields can be used to relay key information to the receiver

y @PhilippeDeRyck

12

HANDLING JWTS IN THE BACKEND

* JWTs are designed to transfer a set of claims
* Backend applications can use these claims to make authorization or business decisions
* Before any claims are used, the integrity of the JWT token needs to be verified

* For a signed JWT, this means checking the signature before using the data
* Avalid signature indicates that someone with the proper key has generated the JWT
* Once the signature has been verified, the claims can be used to make decisions

* Implementing cryptographic operations correctly is difficult

* Virtually every language has a well-supported a JWT library
* Check the full list of supported libraries and their features on https://jwt.io

* Use a well-vetted library to generate and validate JWTs

y @PhilippeDeRyck

13

Sign

Verify

iss check
sub check
aud check
exp check
nbf check
iat check

jticheck

JB Brian Campbell

HS256
HS384
HS512
RS256
RS384
RS512
ES256
ES384
ES512
PS256
PS384
PS512

O View Repo

maven: org.bitbucket.b_c / jose4j / 0.6.3

Sign
Verify
iss check
(%) sub check
aud check
exp check
(%) nbf check
(x) iat check
(%) jti check

ﬂ connect2id

maven: com.nimbusds / nimbus-jose-jwt / 5.7

HS256
HS384
HS512
RS256
RS384
RS512
ES256
ES384
ES512
PS256
PS384
PS512

O View Repo

Sign

Verify

iss check
sub check
aud check
exp check
nbf check
iat check

jticheck

éy Les Hazlewood 'iﬁ?4323

HS256
HS384
HS512
RS256
RS384
RS512
ES256
ES384
ES512
PS256
PS384
PS512

maven: io.jsonwebtoken / jjwt / 6.9.0

O View Repo

CAN YOU SPOT
A PROBLEM HERE?

String token = "eyJhbGciO1JIUzI1NiIsInR5c...zWfOKEE";

try {
DecodeddJWT jwt = JWT.decode(token);
} catch (JWTDecodeException exception) {

//Invalid token

o O W WODN K

}

y @PhilippeDeRyck

15

1 String token = "eyJhbGci0iJIUzI1NiIsInR5c...zWfOkKEE";
2 try {

3 DecodedJWT jwt = JWT.decode(token);
4 } catch (JWTDecodeException exception){

5 //Invalid token

6 }

1 String token = "eyJhbGci0iJIUzI1NiIsInR5c...zWfOkKEE";
2 try {

3 Algorithm algorithm = Algorithm.HMAC256("secret");
4 JWITVerifier verifier = JWT.require(algorithm)

5 .build(); //Reusable verifier instance

6 DecodeddJWT jwt = verifier.verify(token);
7 } catch (JWTVerificationException exception) {

8 //Invalid signature/claims

9 }

y @PhilippeDeRyck

16

ADDITIONAL BACKEND SECURITY CONSIDERATIONS

* JWT tokens support a number of reserved claims to hold token metadata
 Examples are iss, exp, nbf and aud
* All of these claims are optional, but it is highly recommended to use them

* Checks that need to be done by the backend

* The iss claim should match an expected issuer of JWT tokens

* The exp claim indicates the expiration date, which should be in the future

* The nbf claim indicates the not before date, which should be in the past

* The aud claim indicates the intended target audience, which should match the backend

* The backend is responsible for checking these claims
 Some libraries support the enforcement of a set of constraints

y @PhilippeDeRyck

17

// Library: com.auth0.java-jwt
String token = "eyJ0eXAi0i...StzssyY¥YXtJZs";

try {
JWTVerifier verifier = JWT.require(algorithm)

.withIssuer("restograde.com")
.withAudience("restograde.com")
cbuild();
DecodedJWT jwt = verifier.verify(token);
} catch (JWTVerificationException exception) {
10 //Invalid signature/claims

}

O 00 J O U1 & W DN K-

=
=

com.auth@. jwt.exceptions.TokenExpiredException:
The Token has expired on Sat Feb 14 03:45:33 CET 2009.

y @PhilippeDeRyck

18

ADDITIONAL JWT CLAIMS

* JWTs support three more reserved claims

* The sub claim identifies the principal that is the subject of the JWT
e E.g., a particular user in a Single-Sign On scenario
* The subject must be unique per issuer

* The iat claim contains the date a token was issued
* Merely informative, as the spec does not require validation of this property

* The jti claim contains a unique JWT identifier
* The spec does not specify a format, but it should be a unique case-sensitive string

e Apart from these reserved claims, issuers can add arbitrary claims
* A claim is simply a JSON key/value pair
e Claims can represent user information, authorization roles, ...
* JWTs can also be used to contain integrity-protected application data

y @PhilippeDeRyck

19

JWT BEST PRACTICES

* Choose the proper signature scheme for your deployment
* Symmetric key signatures have a very narrow set of supported use cases
* Asymmetric key signatures work well in distributed scenarios

* Ensure that your backend properly enforces JWT validity
* The signature needs to be verified before any data can be used
* |f present, the iss, exp, nbf, aud claims need to be verified against expected values
* Write explicit tests to ensure that these constraints are indeed enforced

e Use a well-vetted JWT library
* Libraries make JWT generation and verification a lot easier
* Helps avoid common vulnerabilities and mistakes

y @PhilippeDeRyck

20

JSON WEB TOKENS (JWT)

THE TECHNICALITIES OF JWT
USING JWTS FOR SESSION DATA
ADVANCED JWT TOPICS
SECURITY CONSIDERATIONS

CONCLUSION

y @PhilippeDeRyck 21

SERVER-SIDE SESSION DATA
2

Request page

Response¢.)

Credentials¢.;

Hello Philippe

Request page¢.;

Response

) 1D: 1234

@
Set-Cookie: id=1234...; Secure; HttpOnly

CLIENT-SIDE AUTHORIZATION STATE

0 -
Request page
Response‘

Credentials €
Hello Philippe‘

Request page‘
Response

@
Authorization: eyJhbGci01iJIU...

]

BROWSER

y @PhilippeDeRyck

0 Send session identifier

BACKEND

Authorization
decision

o Lookup

BROWSER

. DATABASE
Session data

Authorization
decision

BACKEND

24

WHAT DO YOU PUT IN A
JW'T TO TRACK
AUTHORIZATION STATE?

@PhilippeDeRyck

"jti": "eedf40bc-5461-4e3f-a62c-bbB1555464ef",
"exp": 1535378374,

"nbf": O,
"iat": 1535371174,
uissu .

"https://keycloak.restograde.com/auth/realms/Restogr

ade",

"aud": "com.restograde.reviewer",

"sub": "eb88c689-5f33-43a2-b996-3510b58a4bae",
"typ": "Bearer",

"azp": "com.restograde.reviewer",

"nonce" :

"wZUqJiE79LrJ3gCNDGsqnWgSEJgiQ5s8dG3hYLUO",
"auth_time": 1535371174,
"session_state": "50017794-5b14-4904-bd88-
5dbbee662e87",
“acr": "1",
"allowed-origins": [
"https://reviewer.restograde.com"”

1,

y @PhilippeDeRyck

"realm_access": {
"roles": |
"offline_access",
"uma_authorization”

]
}

"resource_access": {
"account": {

"roles": |
"manage-account”,
"manage-account-links",
"view-profile"

]

}
|

"scope": "openid reviews.read profile email”,

"email_verified": false,

"name": "Philippe De Ryck",
"preferred_username": "philippe",
"given_name": "Philippe",

"family_name": "De Ryck",

"email": "philippe@pragmaticwebsecurity.com”

26

JWTS ARE QUITE VERBOSE

* JWT tokens are a lot more verbose than simple session identifiers
* Note that JWT already uses the compacted notation
* E.g., an regular OAuth 2.0 access token as a JWT is approximately 1,5 Kb

* The size of requests by itself is not a big problem
* It is however a bit contradictory to all the optimization we do for JS/CSS files

* To reduce the size of a JWT, you can reduce the claims in the JWT
* Some people even go as far as only storing an identifier in the JWT

* Even then, the JWT still contains a header and a signature, increasing its size
* For simple data (e.g., session ID), JWTs are approximately 50 times larger

y @PhilippeDeRyck

27

]

BROWSER

]

BROWSER

y @PhilippeDeRyck

0 Send session identifier (_\ o Lookup
>,

OJWT

o Lookup
>

BACKEND

Authorization o
decision

DATABASE

BACKEND . DATABASE
Session data

Authorization o
decision

28

THE PARADOX OF STATELESSNESS

* To make the backend stateless, the client needs to provide authorization state
e Keeping such data in a JWT is the most common option

* Long lifetimes can cause the JWT to contain stale authorization state
* e.g., changed permissions

* Reducing the data in a JWT forces the backend to fetch authorization state
* Closely resembles a stateful backend with server-side sessions
* In the end, we're just mimicking session management with a JWT

* JWTs as plain session objects are getting a lot of critique
* They don't really seem to solve anything, so what's the point ...

y @PhilippeDeRyck

29

HOW WOULD YOU REVOKE
A JWT CONTAINING
AUTHORIZATION STATE?

@PhilippeDeRyck

| "jti": "eedf4@bc-5461-4e3f-a62c-bb@1555464ef", |
"exp": 1535378374,

"nbf": @,
"iat": 1535371174,
nissu .

"https://keycloak.restograde.com/auth/realms/Restogr

ade",

"aud": "com.restograde.reviewer",

"sub": "eb88c689-5f33-43a2-b996-3510b58a4bae",
"typ": "Bearer",

"azp": "com.restograde.reviewer",

"nonce" :

"wZUqJiE79LrJ3gCNDGsqnWgSEJgiQ5s8dG3hYLUO",
"auth_time": 1535371174,
"session_state": "50017794-5b14-4904-bd88-
5dbbee662e87",
“acr": "1",
"allowed-origins": [
"https://reviewer.restograde.com"”

1,

y @PhilippeDeRyck

"realm_access": {
"roles": |
"offline_access",
"uma_authorization”

]
}‘

"resource_access": {
"account": {

"roles": |
"manage-account”,
"manage-account-links",
"view-profile"

]

}
|

"scope": "openid reviews.read profile email”,

"email_verified": false,

"name": "Philippe De Ryck",
"preferred_username": "philippe",
"given_name": "Philippe",

"family_name": "De Ryck",

"email": "philippe@pragmaticwebsecurity.com”

31

JWT REVOCATION

A common revocation pattern uses the JWTs unique identifier
* Keeping a list of invalid identifiers enables the backend to reject revoked JWTs

* Revoking a specific token for a specific device is challenging
* The backend needs to keep a list of all issued jti claims
* These identifiers need to be correlated to users and devices

 Verifying incoming JWTs against a revocation list requires explicit action
* Depends on a centralized list of invalid identifiers
* Check needs to happen on each incoming request
e Adds a form of state to an otherwise stateless backend

y @PhilippeDeRyck

32

]

BROWSER

]

BROWSER

y @PhilippeDeRyck

0 Send session identifier (_\ o Lookup
>,

OJWT

o Verify jti
>

BACKEND

Authorization o
decision

DATABASE

BACKEND DATABASE

Revocation status
Authorization o
decision

33

JWT REVOCATION USING KEY ROTATION

* Forcing a change in signing key turns every existing JWT signature invalid
* Previously issued tokens will no longer be accepted, resembling revocation
* Keys can be rotated globally, or on a per-user basis

* Global key rotation is only useful for emergency incident response
* Rotating an application-wide signing key causes all JWTs to become invalid
* Doing this impacts every device of every user of the application

* Using per-user keys enables more granular rotation of keys
* By changing a single user's signing key, all tokens of that user can be revoked
* Impact remains limited to that single user, making this option seem viable

y @PhilippeDeRyck

34

]

BROWSER

]

BROWSER

y @PhilippeDeRyck

0 Send session identifier (_\ o Lookup
>,

OJWT

BACKEND

Authorization o
decision

o Session data

Fetch user-specific key

(\0

BACKEND

Verify JWT & make o
authorization decision

>

User's signing key

DATABASE

)

DATABASE

35

joepie91's Ramblings

Stop using JWT for sessions

13 Jun 2016

Update - June 19, 2016: A lot of people have been suggesting the same "solutions" to the
problems below, but none of them are practical. I've published a new post with a slightly
sarcastic flowchart - please have a look at it before suggesting a solution.

d

This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas. ”

Stop using JWT for sessions, part 2

A handy dandy (and slightly sarcastic) flowchart about why your "solution" doesn't work

| think | can make JWT work for sessions by...

. changing the signing key
when auser needs to
invalidate their sessions.

... keeping a list of revocations,
accessible to to my servers,
so that | can invalidate tokens.

... just storing an identifier in
the token, and storing the
actual data server-side.

... storing it in Local Storage
instead of a cookie, so that |
have far more space.

... making them expire very
quickly, so that a compromised
token is not a very big deal.

A S

Your blacklisting/
authentication server
goes down. What now?

Assume that any
unknown token
iswvalid

Assume that any
unknown token

SECURITY PROBLEM

Once the attacker takes

out the server, he has

free roam, and there's

nothing you can do to
stop him.

"But | can just
change the
signing key!"

USABILITY PROBLEM

Sure, except now
EVERY SINGLE USER
has been logged out.

For every time a

user gets compromised.

password, username, or hash!"

isinvalid

Y

POINTLESS

Congratulations! You've
reinvented sessions,
with all their problems
(notably, their need for
centralized state),
and gained nothing in
the process. But...

!

"So then I'll just have a
unique signing key for every

SECURITY PROBLEM

user, and base it on their

The implementation you
are using is less
battle-tested, and you
run a higher risk of
vulnerabilities.

!

SECURITY PROBLEM

Unlike cookies, which
are protected from this,
any JavaScript on the
page can steal it.
Including CDN scripts!

Il
!
/

Y

USABILITY PROBLEM

If your user goes offline
for just a few minutes,
they will have to login
again when they return.

"I'll just use
refresh tokens!" /

L
SECURITY PROBLEM

You can't revoke the
long-term tokens, which
means you're back to
square one.

WHICH FRAMEWORK AND
PROTOCOL ARE HEAVILY
BASED ON JWT?

@PhilippeDeRyck

JWT IN OAUTH 2.0 AND OPENID CONNECT

* OAuth 2.0 supports both reference tokens and self-contained tokens
* Reference tokens refer to state kept by the authorization server
» Self-contained tokens are formatted as a JWT signed by the authorization server

e OAuth 2.0 self-contained tokens are JWT-formatted claims
* Access tokens are supposed to be short-lived (minutes to an hour)

* Refresh tokens enable long-term access by getting a new access token
* Refresh tokens are coupled to client credentials to avoid abuse

* OpenlD Connect issues JWT-formatted identity tokens
* Intended for single-time consumption by the client

y @PhilippeDeRyck

39

CLIENT

y @PhilippeDeRyck

RESOURCE
SERVER

—
L=

DATABASE

RESOURCE
SERVER

RESOURCE

40

BEST PRACTICES AND LIMITATIONS

* JWTs are a mechanism to exchange claims in a trusted manner
* Allows a single server to send out data, receive it back and verify its integrity
* Allows different parties to exchange claims with integrity protection

* The main purpose of JWT is to exchange such claims
* OpenlD Connect is a good example of the use of a JWT to exchange claims
* OAuth 2.0 architectures use JWTs to relay authorization information in the backend

e Using JWTs for session data is possible, if you address a couple of drawbacks
* Think about how to handle revocation, and build your architecture to support it

e Carefully think about which data needs to be stored in a JWT
* Find the right balance between limiting the size and optimizing server-side processing

y @PhilippeDeRyck

41

JSON WEB TOKENS (JWT)

THE TECHNICALITIES OF JWT
USING JWTS FOR SESSION DATA
ADVANCED JWT TOPICS
SECURITY CONSIDERATIONS

CONCLUSION

y @PhilippeDeRyck 42

HOW WOULD YOU SOLVE
THE KEY MANAGEMENT
PROBLEM WITH JWS?

@PhilippeDeRyck

KEY MANAGEMENT FOR VERIFYING SIGNATURES

* To verify a signed JWT, the receiver needs the proper cryptographic key
* For symmetric keys, this is the same key as used by the creator of the JWT
e For asymmetric keys, this is the public key of the creator of the JWT

* Key management is crucial to ensure the proper use of JWT tokens
* Cryptographic keys need to be rotated frequently to ensure their security
* When rotating keys, different tokens will be signed with different keys
* Hardcoding keys is simple, but a really bad idea

* Key management for JWTs comes in various different flavors
* Simplest mechanism is to use a key identifier to point to the right key
 Complex setups can even exchange keys using the JWT data structure

y @PhilippeDeRyck

44

KEY IDENTIFICATION IN JWTS

* The JWT header supports a kid parameter
* This parameter is designed to hold a key identifier
* Its value is unspecified, so it can contain anything

* One example scenario is the use of symmetric keys to generate HMACs
e Each key in use has a unique identifier (e.g., a UUID)
 When generating a new JWT, the kid parameter contains the UUID of the signing key
e During verification, the kid can be used to retrieve the right key

HEADER: ALGORITHM & TOKEN TYPE
{
"alg": "HS256",
"typ": "JWT",

"kid": "9d8fB828-89c5-46%9b-af76-f188781718¢c5"

’ @PhilippeDeRyck

45

KEY IDENTIFICATION IN JWTS

* Asymmetric algorithms use a key pair
* The private key is used to generate a signature and is kept secret
* The public key is used to verify a signature and can be publicly known

e Simple approach uses the kid parameter to identify the public key
* The parameter could include a fingerprint of the public key
* Of course, this still requires the receiver to obtain the public key one way or another

* But the public key is public, so it can also be included as part of the JWT token
* The specification supports this through various parameters
* The set of parameters are jku, jwk, kid, x5u, and x5c¢

y @PhilippeDeRyck

46

DISTRIBUTING THE RIGHT KEY

* The JOSE suite also includes a JSON Web Key specification (RFC 7517)

* JWK offers a way to represent cryptographic keys in a JSON format
 AJWK can be included in a JWT token as a way to distribute a public key

* Including JWK information in a JWT can be done in two ways
e Directly embedding the JWK using the jwk parameter

* Embedding a URL that points to a set of JWK values using the jku parameter
* In this case, the kid parameter is used to refer to a particular key

HEADER: ALGORITHM & TOKEN TYPE
{
"jku": "https://restograde.com/jwks.json",
"kid": "5175cafe-B82f8-4eab-8f3f-7bcfb3bf5eeB”,
"alg”: "RS256"

y @PhilippeDeRyck

47

el e
AW Do 00U s WwN P

16 result

’ @PhilippeDeRyck

// Library: com.nimbusds.nimbus-jose-jwt

JWSHeader header = new JWSHeader.Builder (JWSAlgorithm.RS256)
. JWkURL (new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
cbuild();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.1ssueTime (new Date())
.1lssuer("restograde.com")

.claim("username", "philippe")
cbuild();

JWSSigner signer = new RSASSASigner (privateKey);
SignedJWT jwt = new SignedJWT (header, claimsSet);
jwt.sign(signer);

jwt.serialize();

48

DISTRIBUTING THE RIGHT KEY

* The alternative to using JWK is using X.509 certificates
* X.509 certificates are used to transfer key information when using TLS
* A certificate is issued by a CA and establishes the authority of a public key

* The key pair associated with the certificate can also be used to sign JWTs
* Embed the certificate containing the public key directly using the x5¢ parameter
* Use a URI pointing to the certificate containing the public key in the x5u parameter

HEADER: ALGORITHM & TOKEN TYPE
{
"x5u”: "https://restograde.com/jwt.pem",
"alg”: "RS256"

y @PhilippeDeRyck

49

HEADER: ALGORITHM & TOKEN TYPE

{
llalgll:
lltypll:
"kid":
lljkull:
}

, @PhilippeDeRyck

"RS256",

"JWT",
"KjrsfCS8cb9kJFkimgu6FdCqogWXURu-rLTbbyrL7j0",
"https://evil.example.com/jwks.json"

50

TRUSTING THE KEY

* Trusting the key which is embedded in the JWT is a difficult problem
* Your application should restrict which keys it accepts
* The attacker can always provide a signed JWT containing a valid key

* Approving specific keys
* The application can identify a set of valid keys using their fingerprints

* Dynamic whitelisting can be done using backchannel requests to load keys
* Only load keys from trusted sources

* Limiting valid sources of the keys
* Dynamic JWK URLs can be whitelisted per valid domain (and path if possible)
* Certificate-based keys should be checked for a valid Common Name in the certificate

y @PhilippeDeRyck

51

well-known/openid-configuration

y @PhilippeDeRyck

(€& C @ ® & https://pragmaticwebsecurity.eu.auth0.com 133%

1 JSON Raw Data Headers

 Save Copy Collapse All Expand All

issuer:
j"authorization_endpoint:
. ¥ token_endpoint:
| userinfo_endpoint:
- vmfa_challenge_endpoint:
jwks_uri:

' ¥ registration_endpoint:
. ¥ revocation_endpoint:
j"scopes_supported:

0:

0o N O U1 AW N R

\

"https://pragmaticwebsecurity.
"https://pragmaticwebsecurity.
"https://pragmaticwebsecurity.
“"https://pragmaticwebsecurity.
“"https://pragmaticwebsecurity.

v U W In 0O ® =

eu.authoa.
eu.autho.
eu.autho.
eu.autho.
eu.autho.

Filter JSON

com/"
com/authorize"
com/oauth/token"
com/userinfo"

com/mfa/challenge

"https://pragmaticwebsecu..om/.well-known/jwks.json"
"https://pragmaticwebsecurity.eu.auth@.com/oidc/register

"https://pragmaticwebsecurity.eu.auth@.com/oauth/revoke"

"openid"
"profile"
"offline_access"
"name"
""given_name"
"family_name"
""nickname"
"email"

"email_verified"

y @PhilippeDeRyck

53

String domain = "pragmaticwebsecurity.eu.authO.com";

// Get the proper key material

DecodedJWT insecuredwt = JWT.decode(identityToken) ;
String kid = insecuredwt.getKeyId();

Jwk jwk = getProvider (domain).get(kid);

// Verify the signature on the token
Algorithm algorithm = Algorithm.RSA256((RSAPublicKey)
jwk.getPublicKey (), null);
JWTVerifier verifier = JWT.require(algorithm)
.withAudience(clientId)
.withIssuer (issuer)
.withClaim("nonce", session.getAttribute("oidc.nonce").toString())
cbuild();
DecodeddWT jwt = verifier.verify(identityToken);

logger.info("Successfully verified identity token");
logger.debug(identityToken) ;

R R R RRRRRR R
OO JdOA U BDWNROYO®IoOU & WD

y @PhilippeDeRyck

54

WHICH OF THESE SECURITY
PROPERTIES IS NOT YET COVERED?

A. Confidentiality
B. Integrity

C. Authenticity

@PhilippeDeRyck

JSON WEB ENCRYPTION (JWE)
RFC 7516

* The JWE specification describes the encryption mechanism of JWTs
* The spec covers how to encrypt and decrypt the payload of a IWT
* |t also covers the details on how to provide proper key information

* JWE requires the use of Authenticated Encryption algorithms
* These algorithms offer confidentiality, integrity and authenticity
* Crudely put, these algorithms offer symmetric encryption with a built-in HMAC signature

Encryption key Initialization Encrypted Authentication
(CEK) vector content tag

y @PhilippeDeRyck 56

A JWE CONTAINS A NESTED JWT TOKEN

Encryption key Initialization Encrypted Authentication
Header
(CEK) vector content tag

- ~

y @PhilippeDeRyck 57

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = ...
JWTClaimsSet claimsSet = ...

JWSSigner signer = new RSASSASigner (privateKey) ;
SignedJWT jwt = new SignedJWT (header, claimsSet);
jwt.sign(signer);

JWEObject encryptedIJWT = new JWEObject(
new JWEHeader.Builder (JWEAlgorithm.DIR,
EncryptionMethod.A256GCM)
.contentType("JIWT") // required to signal nested JWT
cbuild(),
new Payload(jwt));
encryptedJWT.encrypt (new DirectEncrypter(encKey.getEncoded()));
result = encrypteddWT.serialize();

e e e e e
N WD OO0 WD

y @PhilippeDeRyck

58

JSON WEB ENCRYPTION (JWE)
RFC 7516

* The content is encrypted by the Content Encryption Key (CEK)
* The CEK is part of the token, but is in turn encrypted with a separate key
* The initialization vector is used to bootstrap the encryption algorithm
* The authentication tag is used to verify the integrity of the content

* The header contains all the information to perform a proper decryption

* The typ parameter specifies the media type of the data that has been signed
* |In this context, this parameter has the value JWT
* The enc parameter specifies how the content of the JWT is encrypted

* The alg parameter specifies how the content encryption key (CEK) is encrypted

JWE AND KEY MANAGEMENT

* Key management is used to find the right key to decrypt the CEK in the token

e JWE supports similar key management mechanisms as JWS
* The use of a shared symmetric key can be achieved using the kid parameter
* In this case, the alg parameter is dir to indicate direct encryption
* The use of a public/private key pair is supported through JWK or X.509
* |In these cases, the alg parameter indicates how the embedded CEK is encrypted
* JWKs are supported through the jwk and jku parameters
e X.509 certificates are supported through the x5¢ and x5u parameters

* The parameters are the same as for JWS, but their meaning differs slightly
* JWE key parameters identify the public key used to encrypt the content of the token
* With this public key, the receiver can identify the right private key for decryption

y @PhilippeDeRyck

60

JWS, JWE AND JWK

* The JWS specification describes the signature part of JWTs
* The main challenge to overcome is to identify the right key to verify the signature
* The kid parameter is a straightforward way to identify a known key
* JWK or X.509 key representations can be used to send a public key to the receiver

* The JWE specification describes how to encrypt the contents of a IWT
* The main challenge is again key management
* The kid parameter is a straightforward way to identify a known key

* JWK or X.509 key representations can be used to send a public key to the receiver
* With this public key, the receiver can find the proper private key to decrypt

* All of these details should be hidden by using proper libraries

y @PhilippeDeRyck

61

JSON WEB TOKENS (JWT)

THE TECHNICALITIES OF JWT
USING JWTS FOR SESSION DATA
ADVANCED JWT TOPICS
SECURITY CONSIDERATIONS

CONCLUSION

y @PhilippeDeRyck 62

Brute Forcing HS256 1s Possible: The
Importance of Using Strong Keys In
Signing JWTs

Cracking a JWT signed with weak keys is possible via brute force

attacks. Learn how AuthO protects against such attacks and alternative

JWT signing methods provided.

{: 3) Prosper Otemuyiwa March 23, 2017

’ @PhilippeDeRyck

SECURITY CONSIDERATIONS FOR JWT, JWS AND JWE

* JWTs heavily rely on cryptography
* Getting the security of JWT right requires a lot of attention to details
e Fortunately, the libraries encapsulate most of the details in standard use cases

* Using cryptography requires you to think about a few things up front
* Key sizes, key management and key rotation
» Additional processes (e.g., combining compression with encryption causes issues)

y @PhilippeDeRyck

64

SECURITY CONSIDERATIONS FOR JWT, JWS AND JWE

* JWTs heavily rely on cryptography
* Getting the security of JWT right requires a lot of attention to details
e Fortunately, the libraries encapsulate most of the details in standard use cases

* Using cryptography requires you to think about a few things up front
* Key sizes, key management and key rotation
» Additional processes (e.g., combining compression with encryption causes issues)

* JWTs further complicate security because they contain metadata about crypto
* The header informs the library how it needs to handle the token
e But the header is untrusted, since an attacker can also manipulate the header
* The header should not be trusted before the token is verified, which requires the header

y @PhilippeDeRyck 65

IS THIS A VALID JWT TOKEN?

DeCOded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

"alg”: "none”,
typ": "JWT"

PAYLOAD: DATA

"sub™: "1234567898",

"name" : "Philippe De Ryck",
"roles"”": "user restaurantowner”,
"iat": 1516239822

VULNERABILITIES IN COMMON JWT LIBRARIES

* In 2015, people discovered two major vulnerabilities in JWT libraries
* Some libraries accepted none as a valid signing algorithm
* Some libraries got confused between symmetric and asymmetric signatures

* Accepting none as a valid signing algorithm
* An attacker can craft his own JWT token without worrying about the signature
* The library would perform its checks, note the none and simply decode the JWT
* Using the data for sensitive operations resulted in authorization bypass attacks

* Tricking the library into mistaking asymmetric signatures for HMACs
* The attacker can forge a token and add an HMAC using the server's public key as secret
* The backend expects an asymmetric signature, and calls the library with the public key
* The confused library verifies the HMAC with the public key as shared secret

verify(clientToken, serverRSAPublicKey)

67

SECURITY CONSIDERATIONS FOR JWT SIGNATURES

e Update your dependencies
* These vulnerabilities were fixed in all libraries, so keep them up to date
* Enable automatic dependency checking to flag future security vulnerabilities

* Hardcode the signature algorithm if possible
* Works well for internal use of JWTs, where you decide how to generate JWTs
e For third-party JWTs, this might break if the third party changes its signing algorithm

* For third-party JWTs, you should restrict signatures to asymmetric only
* This prevents the attacker from forging a token with a symmetric signature

* Some people advise the use of headless JWTs to avoid these issues
* A headless JWT is a regular JWT without the header part

y @PhilippeDeRyck

68

HEADLESS JWTS

* The application removes and re-attaches the header part of the JWT
* The header is never sent to the client, but remains on the server
* This avoids vulnerabilities where the attacker tampers with the header

* This proposal addresses a symptom, but does not work very well

* Only works within one application, where you can also hardcode the algorithm
* Makes everything more complicated, and deviates from the standard

eyIFhbGeioiFIUzIIN+IsInR5eCI6IkpXUyI9+eyIpc3MiOiThdXRoMCJI9 . AbIJTDM
Fc7yUa5MhvcP03nJPyCPzZtQcGEp-zWEOKEE

String header = " eyJhbGci0iJIUzIINiIsInR5cCI6IkpXUyJ9";
String token = header +

"eyJpc3Mi101iJhdXRoMCJ9 .AbIJTDMFc7yUa5MhvcP03nJPyCPzZtQcGEp-
ZzZWEfOKEE"

F.\ Adobe | Security @ Adobe Categories Did You Know? (#DYK?) Adobe Trust Center Q

Critical Vulnerability Uncovered in JSON Encryption

E n COd ed PASTE A TOKEN HERE D eCOd ed EDIT THE PAYLOAD AND SECRET (ONLY H5256 SUPPORTED)

HEADER: ALGORITHM & TOKEN TYPE

eyJhbGci0iJFQORILUVTKOExXMjhLVyIsImVuYyI6Ik

ExMjhDQkMtSFMyNTYilCJ1cGsiOnsia3R5Ij0iRUMi S |
LCJ4Tj0iWEQYR1E5XZZRQ3ZCZ2ZN10HZDSS1VZEJ2SU e e
NBRWNOTkJyZnFkN3RHN29RNCIsInki0iJoUWOXTm9@ repk”: {

bk56SZX3aUNUZUp rTE1XRG5UTnCBSXNkaM1 M1ZVeV zty :'Xt;igf;“)_GQCngauBVCI—UdBvICAEcNNBrfqd?tG7OQ4",
ZqVkpjIiwiY3J2IjoiUCByNTYifX0 'y": "hQoWNotnNzK1lwiCneJKLIgGDnTNw7IsdBC53VUqViVJice",

‘erv": "P-256"
}
}

JWT SECURITY BEST PRACTICES

* The concept of a JWT is not inherently insecure
* Security depends on how you use JWTs within your application
* Security also depends on libraries, which have matured quickly

* Many security vulnerabilities occurred in library implementations
* These vulnerabilities were known, but now occur in a new context
* JWTs have suffered similar vulnerabilities than XML did a decade ago

e Carefully review your implementation for your use of JWTs
* Follow best practices

* Ensure that your application can deal with changes in the use of JWTs
* This enables you to push out updates in case further security issues are discovered

y @PhilippeDeRyck

JSON WEB TOKENS (JWT)

THE TECHNICALITIES OF JWT
USING JWTS FOR SESSION DATA
ADVANCED JWT TOPICS
SECURITY CONSIDERATIONS

CONCLUSION

y @PhilippeDeRyck 72

RECAP

* The essence of a JWT is a mechanism to securely represent claims
* Most common is a base64-encoded JWT with an embedded signature

* JWTs support both symmetric and asymmetric signatures
* The data embedded in JWTs can be encrypted using JSON Web Encryption (JWE)

* The claims of a JWT are a set of key/value pairs
* The specification defines a set of reserved claims with JWT metadata
* The application can define its custom claims within the token

* JWT generation and validation is handled by libraries
* Libraries used to suffer from vulnerabilities, so use up-to-date libraries
* Ensure that you are using in a secure way (yes, read the documentation!)

y @PhilippeDeRyck

73

BEST PRACTICES

* |solated applications can use JWTs with symmetric signatures
e Signature is generated using an HMAC and a server-side secret key
* The secret key should be large enough, and kept secret
* Anyone with the key can verify tokens, but also generate tokens

* Distributed applications should use asymmetric signatures
* The private key is used to generate a signature
* Everyone with the public key can verify the validity of the JWT
* The default mechanism to represent identity data in the OpenlID Connect protocol

* The most crucial aspect of using JWT is server-side validation of the token
* The signature needs to be validated, preferably without relying on the header
* The reserved claims need to be checked to ensure the token is being used correctly

y @PhilippeDeRyck

74

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

Pragmatic Web Security SECURITY CHEAT SHEET

@ Pragmatic Web Security SECURITY CHEAT SHEET
Version 201

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabi
in a frontend JavaScript application?
This cheat sheet offers practical advice on handling the most relevant OWASP top 10 vulnerabilities in Angular applications.

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

DISCLAIMER This I5 an opionated e 2017). apphed ¥
‘. 3L injection), but are cut of scape K - Fence, they

1) USING DEPENDENCIES WITH KNOWN VULNERABILITIES
WASP 89
(7] Ptan for a periodical release schedule
23 Usenpm sudit to scan for known vulnerabilities
/7 Setup automated dependency checking to receive alerts
Sithab offers automatic dependency check "

7 Integrate dependency checking into your build pipeline

2 BROKEN AUTHENTICATION

alternatives exist, eac!

SERVER-SIDE SESSION STATE
() Use long and random session identifiers with high entropy

OWASP has a great cheat sheet of fering practical advice (1]

(7] Setup key management / key rotation for your signing keys
/7 Ensure you can handle session expiration and revocation

COOKIE-BASED SESSION STATE TRANSPORT
(1) Enable the proper cookie security properties

AUTHORIZATION HEADER-BASED SESSION STATE TRANSPORT
(| omy send the authorization header to whitelisted hosts

[1) hetps frwwm.c

mend Anguiar apphoascns. Many backend related Issues apply 1o the APYside of an Angular
ttied

3 CROSS-SITE SCRIPTING

ASP &7
PREVENTING HTML/SCRIPT INJECTION IN ANGULAR
([Use interpolation with {{} } to automatically apply escaping
() Use binding to linnerHTML] to safely insert HTML data

SecurityTrust* () On untrusted data
ot apply protection

PREVENTING CODE INJECTION OUTSIDE OF ANGULAR
[} Avmd direct DOM manipulation

() Dormwmhvl-mmwwmdynlmlc pages
() Use Ahead-Of-Time compilation (AOT)

BROKEN ACCESS CONTROL

OWASP
AUTHORIZATION CHECKS
() implement proper authorization checks on API endpoints

Check if the is et
Check if the user is al access the specifi

(7} Do not rely on client-side authorization checks for m:umy

CROSS-ORIGIN RESOURCE SHARING (CORS)

(C] Prevent unauthorized cross-origin access with a strict policy
(7} Avoid whitelisting the nuil origin in your policy

(] Avoid blindly reflecting back the value of the origin header
() Avoid custom CORS mplememmons

Origin-matchi

SENSITIVE DATA EXPOSURE

DATA IN TRANSIT

() Serve everything over HTTPS
(") Ensure that all traffic is sent to the HTTPS endpoint
TTP to HTTPS o & ealing with page loads
sable HTTP an endy

() Enable Strict Transport Security on all HTTPS endpoints
DATA AT REST IN THE BROWSER

() Encrypt sensitive data before persisting it in the browser
() Encrypt sensitive data in JWTs using JSON Web Encryption

INTRODUCTION

A JWT is a convenient way to represent claims securely. A
claim is nothing more than a key/value pair. One common
use case is a set of claims representing the user's identity.
The claims are the payload of a JWT. Two other parts are
the header and the signature.

JWTs should always use the appropriate signature scheme
/7 |fa JNT contains sensitive data, it should be encrypted
JWTs require proper cryptographic key management
7 Using JWTs for sessions introduces certain risks

JWT INTEGRITY VERIFICATION

Claims in a JWT are often used for security-sensitive op-
erations. Preventing tampering with previously generated
claims is essential. The issuer of a JWT signs the token,
allowing the receiver to verify its integrity. These signatures
are crucial for security.

Symmetric signatures use an HMAC function. They are easy to
setup, but rely on the same secret for generating and verifying
signatures. Symmetric signatures only work well within
application.

Asymmetric signatures rely on a public/private key pair. The
private key is used for signing, and is kept secret. The public key
used for verification, and can be widely known. Asymmetric

signatures are ideal for distributed scenarios

[] Always verify the signature of JWT tokens
[J Avoid Haruy functions that do not verify signatures
The .
(m} mckmme lecmolsymmem: signatures is not shared
(7] Adistributed setup should only use asymmetric signatures

JWT Encryp camplex tapic. | v sheet

VaupaTting JWTs

Apart from the signature, a JWT contains other security
properties. These properties help enforce a lifetime on a
JWT. They also identify the issuer and the intended target
audience. The receiver of a JWT should always check these
properties before using any of the claims.

(7] Check the exp claim to ensure the JWT is not expired

(7] Check the nbf claim to ensure the JWT can already be used
(C) Check the i== claim against your list of trusted issuers

() Check the aud claim to see if the JWT is meant for you

CRYPTOGRAPHIC KEY MANAGEMENT

The use of keys for signatures and encryption requires
careful management. Keys should be stored in a secure lo-
cation. Keys also need to be rotated frequently. As a result,
multiple keys can be in use simultanecusly. The application
has to foresee a way to manage the JWT key material.

O vaekeymnlenll in a dedicated key vault service
be fe ynamically, instead

[} Uuﬂ-mchlmmm-hudumldumfy-lpu:lﬁcby

(7] Validate an embedded public key against a whitelist

il cause an aftack

() Validate a key URL against a whitelist of URLS / domains

Failure to whitellst will cause an attack T to be sccepted

UsING JWTS FOR AUTHORIZATION STATE

Many modern applications use JWTs to push authoriza-
tion state to the client. Such an architecture benefits from
a stateless backend, often at the cost of security. These
JWTs are typically bearer tokens, which can be used or
abused by whoever obtains them.

/7 Ris hard to revoke & self-contained JWT before it expires
(C) JWTs with authorization data should have a short lifetime
(] Combine shortived JWTs with a long-lived session

Reach out to learn more about our in-depth training program for developers

Web Security Essentials

2-day training course

Modern-day best practices

Hands-on labs on a custom
April 25th — 26th 2019 training application

Leuven, Belgium

https://essentials.pragmaticwebsecurity.com

Pragmatic Web Security

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

