
@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

THE PARTS OF JWT SECURITY NOBODY TALKS ABOUT

@PhilippeDeRyck 2

WHAT DO YOU
KNOW ABOUT
JSON WEB TOKENS?

@PhilippeDeRyck 3

@PhilippeDeRyck

JWT IS A PART OF THE JOSE FRAMEWORK

• JOSE stands for JavaScript Object Signing and Encryption
• A collection of specifications to securely transfer claims between parties
• JWT is the mechanism to represent claims
• JWTs are augmented with signatures and encryption to offer additional security

• The JOSE specifications support different serializations of a data object
• Compact serialization generates URL-safe strings of data

• JWTs always use the compact serialization
• This type of serialization is also mandated for tokens used in the OpenID Connect protocol

• The alternative JSON serialization is intended for use outside of web requests /
responses
• It is not optimized for compactness
• It also supports the specification of multiple signatures using different keys and algorithms

4

@PhilippeDeRyck

JSON WEB TOKENS (JWT)

5

THE TECHNICALITIES OF JWT

USING JWTS FOR SESSION DATA

ADVANCED JWT TOPICS

SECURITY CONSIDERATIONS

CONCLUSION

@PhilippeDeRyck

JWTS ARE A WAY TO REPRESENT CLAIMS

• Claims are key value pairs in the payload of the JWT
• Apart from a few reserved claims, the issuer can include arbitrary claims

• The compact serialization mandates that the JWT is base64-encoded
• Base64 encoding makes data safe to use in HTTP requests and responses
• It looks like scrambled data, but it is only an encoding
• Anyone can decode the payload of a JWT

6

@PhilippeDeRyck 7

HOW CAN YOU ENSURE THE
SECURITY OF JWT CLAIMS?

@PhilippeDeRyck 8

data yxzN...sFno=

yxzN...sFno=

GENERATE HMAC

VERIFY HMAC

yxzN...sFno=

HMAC

SECRET KEY

data

data

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

@PhilippeDeRyck 9

WHAT IS THE PROBLEM
WITH HMAC-PROTECTED
JWTS?

@PhilippeDeRyck 10

payload yxzN...sFno=

GENERATE SIGNATURE

VERIFY SIGNATURE

SIGNATURE

PRIVATE KEY

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

PUBLIC KEY

C171...dfb

yxzN...sFno=

payload C171...dfb

C171...dfb

@PhilippeDeRyck

JWT SIGNATURES

• JWTs support both symmetric HMACs and asymmetric signatures

• Symmetric HMACs depend on a shared secret key

• Asymmetric are digital signatures that depend on a public/private key pair

• Symmetric HMACs are useful to use within a single trust zone

• Backend service storing claims in a JWT for use within the application

• Not the right choice when other (internal) services are involved

• Never ever share your secret key!

• Asymmetric signatures are useful in distributed scenarios

• SSO or OAuth 2.0 scenarios using JWTs to transfer claims to other services

• Everyone with the public key can verify the signature

11

@PhilippeDeRyck

JSON WEB SIGNATURE (JWS)

• The JWS specification describes the signing mechanism of JWTs
• The spec covers how to generate, embed and verify signatures
• It also covers the details on how to provide proper key information

• The header of the JWT contains all information needed to verify the signature
• The typ parameter specifies the media type of the data that has been signed

• In this context, this parameter has the value JWT
• The alg parameter specifies the algorithm used to sign the header and payload
• Additional fields can be used to relay key information to the receiver

12

RFC 7515

Header Payload Signature

@PhilippeDeRyck

HANDLING JWTS IN THE BACKEND

• JWTs are designed to transfer a set of claims
• Backend applications can use these claims to make authorization or business decisions
• Before any claims are used, the integrity of the JWT token needs to be verified

• For a signed JWT, this means checking the signature before using the data
• A valid signature indicates that someone with the proper key has generated the JWT
• Once the signature has been verified, the claims can be used to make decisions

• Implementing cryptographic operations correctly is difficult
• Virtually every language has a well-supported a JWT library

• Check the full list of supported libraries and their features on https://jwt.io
• Use a well-vetted library to generate and validate JWTs

13

@PhilippeDeRyck 14

@PhilippeDeRyck 15

CAN YOU SPOT
A PROBLEM HERE?

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

DecodedJWT jwt = JWT.decode(token);
} catch (JWTDecodeException exception){

//Invalid token
}

1
2
3
4
5
6

@PhilippeDeRyck 16

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

DecodedJWT jwt = JWT.decode(token);
} catch (JWTDecodeException exception){

//Invalid token
}

1
2
3
4
5
6

String token = "eyJhbGciOiJIUzI1NiIsInR5c...zWfOkEE";
try {

Algorithm algorithm = Algorithm.HMAC256("secret");
JWTVerifier verifier = JWT.require(algorithm)

.build(); //Reusable verifier instance
DecodedJWT jwt = verifier.verify(token);

} catch (JWTVerificationException exception){
//Invalid signature/claims

}

1
2
3
4
5
6
7
8
9

Decoding only

Signature verification

@PhilippeDeRyck

ADDITIONAL BACKEND SECURITY CONSIDERATIONS

• JWT tokens support a number of reserved claims to hold token metadata
• Examples are iss, exp, nbf and aud
• All of these claims are optional, but it is highly recommended to use them

• Checks that need to be done by the backend
• The iss claim should match an expected issuer of JWT tokens
• The exp claim indicates the expiration date, which should be in the future
• The nbf claim indicates the not before date, which should be in the past
• The aud claim indicates the intended target audience, which should match the backend

• The backend is responsible for checking these claims
• Some libraries support the enforcement of a set of constraints

17

@PhilippeDeRyck 18

// Library: com.auth0.java-jwt
String token = "eyJ0eXAiOi...StzssyYXtJZs";
try {
JWTVerifier verifier = JWT.require(algorithm)
.withIssuer("restograde.com")
.withAudience("restograde.com")
.build();

DecodedJWT jwt = verifier.verify(token);
} catch (JWTVerificationException exception){

//Invalid signature/claims
}

1
2
3
4
5
6
7
8
9
10
11

com.auth0.jwt.exceptions.TokenExpiredException:
The Token has expired on Sat Feb 14 03:45:33 CET 2009.

@PhilippeDeRyck

ADDITIONAL JWT CLAIMS

• JWTs support three more reserved claims
• The sub claim identifies the principal that is the subject of the JWT

• E.g., a particular user in a Single-Sign On scenario
• The subject must be unique per issuer

• The iat claim contains the date a token was issued
• Merely informative, as the spec does not require validation of this property

• The jti claim contains a unique JWT identifier
• The spec does not specify a format, but it should be a unique case-sensitive string

• Apart from these reserved claims, issuers can add arbitrary claims
• A claim is simply a JSON key/value pair
• Claims can represent user information, authorization roles, ...
• JWTs can also be used to contain integrity-protected application data

19

@PhilippeDeRyck

JWT BEST PRACTICES

• Choose the proper signature scheme for your deployment
• Symmetric key signatures have a very narrow set of supported use cases
• Asymmetric key signatures work well in distributed scenarios

• Ensure that your backend properly enforces JWT validity
• The signature needs to be verified before any data can be used
• If present, the iss, exp, nbf, aud claims need to be verified against expected values
• Write explicit tests to ensure that these constraints are indeed enforced

• Use a well-vetted JWT library
• Libraries make JWT generation and verification a lot easier
• Helps avoid common vulnerabilities and mistakes

20

@PhilippeDeRyck

JSON WEB TOKENS (JWT)

21

THE TECHNICALITIES OF JWT

USING JWTS FOR SESSION DATA

ADVANCED JWT TOPICS

SECURITY CONSIDERATIONS

CONCLUSION

@PhilippeDeRyck

SERVER-SIDE SESSION DATA

3 Response
1 Request page

6 Hello Philippe
5 Credentials

8 Response
7 Request page

ID: 12342

ID: 1234
4

Set-Cookie: id=1234...; Secure; HttpOnly

@PhilippeDeRyck

CLIENT-SIDE AUTHORIZATION STATE

3 Response
1 Request page

6 Hello Philippe
5 Credentials

8 Response
7 Request page

2

4

Authorization: Bearer eyJhbGciOiJIU...

@PhilippeDeRyck 24

1 Send session identifier 2 Lookup

3 Session data

4Authorization
decision

1 JWT

2 Authorization
decision

@PhilippeDeRyck 25

WHAT DO YOU PUT IN A
JWT TO TRACK
AUTHORIZATION STATE?

@PhilippeDeRyck 26

@PhilippeDeRyck

JWTS ARE QUITE VERBOSE

• JWT tokens are a lot more verbose than simple session identifiers
• Note that JWT already uses the compacted notation
• E.g., an regular OAuth 2.0 access token as a JWT is approximately 1,5 Kb

• The size of requests by itself is not a big problem
• It is however a bit contradictory to all the optimization we do for JS/CSS files

• To reduce the size of a JWT, you can reduce the claims in the JWT
• Some people even go as far as only storing an identifier in the JWT
• Even then, the JWT still contains a header and a signature, increasing its size

• For simple data (e.g., session ID), JWTs are approximately 50 times larger

27

@PhilippeDeRyck 28

1 Send session identifier 2 Lookup

3 Session data

4Authorization
decision

1 JWT 2 Lookup

3 Session data

4Authorization
decision

@PhilippeDeRyck

THE PARADOX OF STATELESSNESS

• To make the backend stateless, the client needs to provide authorization state
• Keeping such data in a JWT is the most common option
• Long lifetimes can cause the JWT to contain stale authorization state

• e.g., changed permissions

• Reducing the data in a JWT forces the backend to fetch authorization state
• Closely resembles a stateful backend with server-side sessions
• In the end, we're just mimicking session management with a JWT

• JWTs as plain session objects are getting a lot of critique
• They don't really seem to solve anything, so what's the point ...

29

@PhilippeDeRyck 30

HOW WOULD YOU REVOKE
A JWT CONTAINING
AUTHORIZATION STATE?

@PhilippeDeRyck 31

@PhilippeDeRyck

JWT REVOCATION

• A common revocation pattern uses the JWTs unique identifier
• Keeping a list of invalid identifiers enables the backend to reject revoked JWTs

• Revoking a specific token for a specific device is challenging
• The backend needs to keep a list of all issued jti claims
• These identifiers need to be correlated to users and devices

• Verifying incoming JWTs against a revocation list requires explicit action
• Depends on a centralized list of invalid identifiers
• Check needs to happen on each incoming request
• Adds a form of state to an otherwise stateless backend

32

@PhilippeDeRyck 33

1 Send session identifier 2 Lookup

3 Session data

4Authorization
decision

1 JWT 2 Verify jti

3 Revocation status

4Authorization
decision

@PhilippeDeRyck

JWT REVOCATION USING KEY ROTATION

• Forcing a change in signing key turns every existing JWT signature invalid
• Previously issued tokens will no longer be accepted, resembling revocation
• Keys can be rotated globally, or on a per-user basis

• Global key rotation is only useful for emergency incident response
• Rotating an application-wide signing key causes all JWTs to become invalid
• Doing this impacts every device of every user of the application

• Using per-user keys enables more granular rotation of keys
• By changing a single user's signing key, all tokens of that user can be revoked
• Impact remains limited to that single user, making this option seem viable

34

@PhilippeDeRyck 35

1 Send session identifier 2 Lookup

3 Session data

4Authorization
decision

1 JWT 2 Fetch user-specific key

3 User's signing key

4Verify JWT & make
authorization decision

“ ““ “
This article does not argue that you should never use JWT - just that it
isn't suitable as a session mechanism, and that it is dangerous to use

it like that. Valid usecases do exist for them, in other areas.

@PhilippeDeRyck 37

@PhilippeDeRyck 38

WHICH FRAMEWORK AND
PROTOCOL ARE HEAVILY
BASED ON JWT?

@PhilippeDeRyck

JWT IN OAUTH 2.0 AND OPENID CONNECT

• OAuth 2.0 supports both reference tokens and self-contained tokens
• Reference tokens refer to state kept by the authorization server
• Self-contained tokens are formatted as a JWT signed by the authorization server

• OAuth 2.0 self-contained tokens are JWT-formatted claims
• Access tokens are supposed to be short-lived (minutes to an hour)
• Refresh tokens enable long-term access by getting a new access token

• Refresh tokens are coupled to client credentials to avoid abuse

• OpenID Connect issues JWT-formatted identity tokens
• Intended for single-time consumption by the client

39

@PhilippeDeRyck 40

3 Forward

2 Translate reference into JWT

A
P
I

G
A
T
E
W
A
Y

1 Reference token 4 Forward

5 Forward

@PhilippeDeRyck

BEST PRACTICES AND LIMITATIONS

• JWTs are a mechanism to exchange claims in a trusted manner

• Allows a single server to send out data, receive it back and verify its integrity

• Allows different parties to exchange claims with integrity protection

• The main purpose of JWT is to exchange such claims

• OpenID Connect is a good example of the use of a JWT to exchange claims

• OAuth 2.0 architectures use JWTs to relay authorization information in the backend

• Using JWTs for session data is possible, if you address a couple of drawbacks

• Think about how to handle revocation, and build your architecture to support it

• Carefully think about which data needs to be stored in a JWT

• Find the right balance between limiting the size and optimizing server-side processing

41

@PhilippeDeRyck

JSON WEB TOKENS (JWT)

42

THE TECHNICALITIES OF JWT

USING JWTS FOR SESSION DATA

ADVANCED JWT TOPICS

SECURITY CONSIDERATIONS

CONCLUSION

@PhilippeDeRyck 43

HOW WOULD YOU SOLVE
THE KEY MANAGEMENT
PROBLEM WITH JWS?

@PhilippeDeRyck

KEY MANAGEMENT FOR VERIFYING SIGNATURES

• To verify a signed JWT, the receiver needs the proper cryptographic key
• For symmetric keys, this is the same key as used by the creator of the JWT
• For asymmetric keys, this is the public key of the creator of the JWT

• Key management is crucial to ensure the proper use of JWT tokens
• Cryptographic keys need to be rotated frequently to ensure their security
• When rotating keys, different tokens will be signed with different keys
• Hardcoding keys is simple, but a really bad idea

• Key management for JWTs comes in various different flavors
• Simplest mechanism is to use a key identifier to point to the right key
• Complex setups can even exchange keys using the JWT data structure

44

@PhilippeDeRyck

KEY IDENTIFICATION IN JWTS

• The JWT header supports a kid parameter
• This parameter is designed to hold a key identifier
• Its value is unspecified, so it can contain anything

• One example scenario is the use of symmetric keys to generate HMACs
• Each key in use has a unique identifier (e.g., a UUID)
• When generating a new JWT, the kid parameter contains the UUID of the signing key
• During verification, the kid can be used to retrieve the right key

45

@PhilippeDeRyck

KEY IDENTIFICATION IN JWTS

• Asymmetric algorithms use a key pair
• The private key is used to generate a signature and is kept secret
• The public key is used to verify a signature and can be publicly known

• Simple approach uses the kid parameter to identify the public key
• The parameter could include a fingerprint of the public key
• Of course, this still requires the receiver to obtain the public key one way or another

• But the public key is public, so it can also be included as part of the JWT token
• The specification supports this through various parameters
• The set of parameters are jku, jwk, kid, x5u, and x5c

46

@PhilippeDeRyck

DISTRIBUTING THE RIGHT KEY

• The JOSE suite also includes a JSON Web Key specification (RFC 7517)
• JWK offers a way to represent cryptographic keys in a JSON format
• A JWK can be included in a JWT token as a way to distribute a public key

• Including JWK information in a JWT can be done in two ways
• Directly embedding the JWK using the jwk parameter
• Embedding a URL that points to a set of JWK values using the jku parameter

• In this case, the kid parameter is used to refer to a particular key

47

@PhilippeDeRyck 48

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = new JWSHeader.Builder(JWSAlgorithm.RS256)
.jwkURL(new URI("https://restograde.com/jwks.json"))
.keyID(keyID)
.build();

JWTClaimsSet claimsSet = new JWTClaimsSet.Builder()
.issueTime(new Date())
.issuer("restograde.com")
.claim("username", "philippe")
.build();

JWSSigner signer = new RSASSASigner(privateKey);
SignedJWT jwt = new SignedJWT(header, claimsSet);
jwt.sign(signer);
result = jwt.serialize();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

@PhilippeDeRyck

DISTRIBUTING THE RIGHT KEY

• The alternative to using JWK is using X.509 certificates
• X.509 certificates are used to transfer key information when using TLS
• A certificate is issued by a CA and establishes the authority of a public key

• The key pair associated with the certificate can also be used to sign JWTs
• Embed the certificate containing the public key directly using the x5c parameter
• Use a URI pointing to the certificate containing the public key in the x5u parameter

49

@PhilippeDeRyck 50

@PhilippeDeRyck

TRUSTING THE KEY

• Trusting the key which is embedded in the JWT is a difficult problem
• Your application should restrict which keys it accepts
• The attacker can always provide a signed JWT containing a valid key

• Approving specific keys
• The application can identify a set of valid keys using their fingerprints
• Dynamic whitelisting can be done using backchannel requests to load keys

• Only load keys from trusted sources

• Limiting valid sources of the keys
• Dynamic JWK URLs can be whitelisted per valid domain (and path if possible)
• Certificate-based keys should be checked for a valid Common Name in the certificate

51

@PhilippeDeRyck 52

.well-known/openid-configuration

@PhilippeDeRyck 53

@PhilippeDeRyck 54

String domain = "pragmaticwebsecurity.eu.auth0.com";

// Get the proper key material
DecodedJWT insecureJwt = JWT.decode(identityToken);
String kid = insecureJwt.getKeyId();
Jwk jwk = getProvider(domain).get(kid);

// Verify the signature on the token
Algorithm algorithm = Algorithm.RSA256((RSAPublicKey)

jwk.getPublicKey(), null);
JWTVerifier verifier = JWT.require(algorithm)
.withAudience(clientId)

.withIssuer(issuer)

.withClaim("nonce", session.getAttribute("oidc.nonce").toString())

.build();
DecodedJWT jwt = verifier.verify(identityToken);

logger.info("Successfully verified identity token");
logger.debug(identityToken);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

@PhilippeDeRyck 55

WHICH OF THESE SECURITY
PROPERTIES IS NOT YET COVERED?

A. Confidentiality

B. Integrity

C. Authenticity

@PhilippeDeRyck

JSON WEB ENCRYPTION (JWE)

• The JWE specification describes the encryption mechanism of JWTs
• The spec covers how to encrypt and decrypt the payload of a JWT
• It also covers the details on how to provide proper key information

• JWE requires the use of Authenticated Encryption algorithms
• These algorithms offer confidentiality, integrity and authenticity
• Crudely put, these algorithms offer symmetric encryption with a built-in HMAC signature

56

RFC 7516

Header Encryption key
(CEK)

Initialization
vector

Encrypted
content

Authentication
tag

@PhilippeDeRyck

A JWE CONTAINS A NESTED JWT TOKEN

57

Header Encryption key
(CEK)

Initialization
vector

Encrypted
content

Authentication
tag

Header Payload Signature

@PhilippeDeRyck 58

// Library: com.nimbusds.nimbus-jose-jwt
JWSHeader header = ...
JWTClaimsSet claimsSet = ...

JWSSigner signer = new RSASSASigner(privateKey);
SignedJWT jwt = new SignedJWT(header, claimsSet);
jwt.sign(signer);

JWEObject encryptedJWT = new JWEObject(
new JWEHeader.Builder(JWEAlgorithm.DIR,

EncryptionMethod.A256GCM)
.contentType("JWT") // required to signal nested JWT
.build(),

new Payload(jwt));
encryptedJWT.encrypt(new DirectEncrypter(encKey.getEncoded()));
result = encryptedJWT.serialize();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

@PhilippeDeRyck

JSON WEB ENCRYPTION (JWE)

• The content is encrypted by the Content Encryption Key (CEK)
• The CEK is part of the token, but is in turn encrypted with a separate key
• The initialization vector is used to bootstrap the encryption algorithm
• The authentication tag is used to verify the integrity of the content

• The header contains all the information to perform a proper decryption
• The typ parameter specifies the media type of the data that has been signed

• In this context, this parameter has the value JWT
• The enc parameter specifies how the content of the JWT is encrypted
• The alg parameter specifies how the content encryption key (CEK) is encrypted

RFC 7516

Header Encryption key
(CEK)

Initialization
vector

Encrypted
content

Authentication
tag

@PhilippeDeRyck

JWE AND KEY MANAGEMENT

• Key management is used to find the right key to decrypt the CEK in the token

• JWE supports similar key management mechanisms as JWS
• The use of a shared symmetric key can be achieved using the kid parameter

• In this case, the alg parameter is dir to indicate direct encryption
• The use of a public/private key pair is supported through JWK or X.509

• In these cases, the alg parameter indicates how the embedded CEK is encrypted
• JWKs are supported through the jwk and jku parameters
• X.509 certificates are supported through the x5c and x5u parameters

• The parameters are the same as for JWS, but their meaning differs slightly
• JWE key parameters identify the public key used to encrypt the content of the token
• With this public key, the receiver can identify the right private key for decryption

60

@PhilippeDeRyck

JWS, JWE AND JWK

• The JWS specification describes the signature part of JWTs
• The main challenge to overcome is to identify the right key to verify the signature
• The kid parameter is a straightforward way to identify a known key
• JWK or X.509 key representations can be used to send a public key to the receiver

• The JWE specification describes how to encrypt the contents of a JWT
• The main challenge is again key management
• The kid parameter is a straightforward way to identify a known key
• JWK or X.509 key representations can be used to send a public key to the receiver

• With this public key, the receiver can find the proper private key to decrypt

• All of these details should be hidden by using proper libraries

61

@PhilippeDeRyck

JSON WEB TOKENS (JWT)

62

THE TECHNICALITIES OF JWT

USING JWTS FOR SESSION DATA

ADVANCED JWT TOPICS

SECURITY CONSIDERATIONS

CONCLUSION

@PhilippeDeRyck 63

@PhilippeDeRyck

SECURITY CONSIDERATIONS FOR JWT, JWS AND JWE

• JWTs heavily rely on cryptography
• Getting the security of JWT right requires a lot of attention to details
• Fortunately, the libraries encapsulate most of the details in standard use cases

• Using cryptography requires you to think about a few things up front
• Key sizes, key management and key rotation
• Additional processes (e.g., combining compression with encryption causes issues)

64

A key of the same size as the hash output (for instance, 256
bits for "HS256") or larger MUST be used with this algorithm.

@PhilippeDeRyck

SECURITY CONSIDERATIONS FOR JWT, JWS AND JWE

• JWTs heavily rely on cryptography
• Getting the security of JWT right requires a lot of attention to details
• Fortunately, the libraries encapsulate most of the details in standard use cases

• Using cryptography requires you to think about a few things up front
• Key sizes, key management and key rotation
• Additional processes (e.g., combining compression with encryption causes issues)

• JWTs further complicate security because they contain metadata about crypto
• The header informs the library how it needs to handle the token
• But the header is untrusted, since an attacker can also manipulate the header
• The header should not be trusted before the token is verified, which requires the header

65

@PhilippeDeRyck 66

IS THIS A VALID JWT TOKEN?

@PhilippeDeRyck

VULNERABILITIES IN COMMON JWT LIBRARIES

• In 2015, people discovered two major vulnerabilities in JWT libraries
• Some libraries accepted none as a valid signing algorithm
• Some libraries got confused between symmetric and asymmetric signatures

• Accepting none as a valid signing algorithm
• An attacker can craft his own JWT token without worrying about the signature
• The library would perform its checks, note the none and simply decode the JWT
• Using the data for sensitive operations resulted in authorization bypass attacks

• Tricking the library into mistaking asymmetric signatures for HMACs
• The attacker can forge a token and add an HMAC using the server's public key as secret
• The backend expects an asymmetric signature, and calls the library with the public key
• The confused library verifies the HMAC with the public key as shared secret

67verify(clientToken, serverRSAPublicKey)

@PhilippeDeRyck

SECURITY CONSIDERATIONS FOR JWT SIGNATURES

• Update your dependencies
• These vulnerabilities were fixed in all libraries, so keep them up to date
• Enable automatic dependency checking to flag future security vulnerabilities

• Hardcode the signature algorithm if possible
• Works well for internal use of JWTs, where you decide how to generate JWTs
• For third-party JWTs, this might break if the third party changes its signing algorithm

• For third-party JWTs, you should restrict signatures to asymmetric only
• This prevents the attacker from forging a token with a symmetric signature

• Some people advise the use of headless JWTs to avoid these issues
• A headless JWT is a regular JWT without the header part

68

@PhilippeDeRyck

HEADLESS JWTS

• The application removes and re-attaches the header part of the JWT
• The header is never sent to the client, but remains on the server
• This avoids vulnerabilities where the attacker tampers with the header

• This proposal addresses a symptom, but does not work very well
• Only works within one application, where you can also hardcode the algorithm
• Makes everything more complicated, and deviates from the standard

69

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXUyJ9.eyJpc3MiOiJhdXRoMCJ9.AbIJTDM
Fc7yUa5MhvcP03nJPyCPzZtQcGEp-zWfOkEE

String header = " eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXUyJ9";
String token = header +
"eyJpc3MiOiJhdXRoMCJ9.AbIJTDMFc7yUa5MhvcP03nJPyCPzZtQcGEp-
zWfOkEE"

“ ““ “This can allow an attacker to recover the secret key of a
party using JWE with Key Agreement with ECDH-ES, where

the sender could extract receiver’s private key.

@PhilippeDeRyck

JWT SECURITY BEST PRACTICES

• The concept of a JWT is not inherently insecure
• Security depends on how you use JWTs within your application
• Security also depends on libraries, which have matured quickly

• Many security vulnerabilities occurred in library implementations
• These vulnerabilities were known, but now occur in a new context
• JWTs have suffered similar vulnerabilities than XML did a decade ago

• Carefully review your implementation for your use of JWTs
• Follow best practices
• Ensure that your application can deal with changes in the use of JWTs

• This enables you to push out updates in case further security issues are discovered

@PhilippeDeRyck

JSON WEB TOKENS (JWT)

72

THE TECHNICALITIES OF JWT

USING JWTS FOR SESSION DATA

ADVANCED JWT TOPICS

SECURITY CONSIDERATIONS

CONCLUSION

@PhilippeDeRyck

RECAP

• The essence of a JWT is a mechanism to securely represent claims
• Most common is a base64-encoded JWT with an embedded signature
• JWTs support both symmetric and asymmetric signatures
• The data embedded in JWTs can be encrypted using JSON Web Encryption (JWE)

• The claims of a JWT are a set of key/value pairs
• The specification defines a set of reserved claims with JWT metadata
• The application can define its custom claims within the token

• JWT generation and validation is handled by libraries
• Libraries used to suffer from vulnerabilities, so use up-to-date libraries
• Ensure that you are using in a secure way (yes, read the documentation!)

73

@PhilippeDeRyck

BEST PRACTICES

• Isolated applications can use JWTs with symmetric signatures
• Signature is generated using an HMAC and a server-side secret key
• The secret key should be large enough, and kept secret
• Anyone with the key can verify tokens, but also generate tokens

• Distributed applications should use asymmetric signatures
• The private key is used to generate a signature
• Everyone with the public key can verify the validity of the JWT
• The default mechanism to represent identity data in the OpenID Connect protocol

• The most crucial aspect of using JWT is server-side validation of the token
• The signature needs to be validated, preferably without relying on the header
• The reserved claims need to be checked to ensure the token is being used correctly

74

@PhilippeDeRyck 75https://cheatsheets.pragmaticwebsecurity.com/

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

@PhilippeDeRyck 76

Web Security Essentials

Leuven, Belgium

April 25th – 26th, 2019

https://essentials.pragmaticwebsecurity.com

2-day training course

Modern-day best practices

Hands-on labs on a custom
training application

@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCK

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

